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ABSTRACT

The uncertainty in the projection of future drought occurrence was explored for four different drought
indices using two model ensembles. The first ensemble expresses uncertainty in the parameter space of the
third Hadley Centre climate model, and the second is a multimodel ensemble that additionally expresses
structural uncertainty in the climate modeling process. The standardized precipitation index (SPI), the
precipitation and potential evaporation anomaly (PPEA), the Palmer drought severity index (PDSI), and
the soil moisture anomaly (SMA) were derived for both a single CO2 (1�CO2) and a double CO2 (2�CO2)
climate. The change in moderate drought, defined by the 20th percentile of the relevant 1�CO2 distribu-
tion, was calculated. SPI, based solely on precipitation, shows little change in the proportion of the land
surface in drought. All the other indices, which include a measure of the atmospheric demand for moisture,
show a significant increase with an additional 5%–45% of the land surface in drought. There are large
uncertainties in regional changes in drought. Regions where the precipitation decreases show a reproducible
increase in drought across ensemble members and indices. In other regions the sign and magnitude of the
change in drought is dependent on index definition and ensemble member, suggesting that the selection of
appropriate drought indices is important for impact studies.

1. Introduction

Drought can have a significant impact on the socio-
economic state of the population. Therefore, drought
events are carefully monitored in order to help mitigate
associated losses and to manage impacts. In addition, it
is important to investigate how drought might change
under future climate change scenarios using relevant
drought metrics. Results from these studies can be used
to inform impacts and develop adaptation strategies.

Definitions of drought depend on the nature of the
water deficit and the objective of its use (American
Meteorological Society 1997). There are three main
types of drought: 1) meteorological drought, which is
usually defined as a drying relative to the mean state; 2)
agricultural drought, which results in a reduced supply
of moisture for crops; and 3) hydrological drought as-
sociated with a deficit in the supply of surface and sub-
surface water. Hence, there are a whole range of dif-
ferent drought indices (Keyantash and Dracup 2002)
that are more or less relevant to each drought classifi-

cation and that are usually dependent on some combi-
nation of precipitation, temperature, potential evapo-
ration, runoff, and soil moisture. Future projections of
drought will depend on the specific definition of
drought used.

General circulation models (GCMs) have been used
previously to investigate water availability. For ex-
ample, Wetherald and Manabe (2002) and Manabe et
al. (2004) showed a global increase in runoff rate under
future climate scenarios, possibly suggesting less hydro-
logical drought. Summer drying in many parts of the
northern subtropics and midlatitudes is a key feature of
the majority of models (Rowell and Jones 2006; Senevi-
ratne et al. 2002; Meehl et al. 2006) although with a
large variation in amplitude between models (Wang
2005), possibly suggesting an increase in meteorological
and agricultural drought over these regions. Burke et
al. (2006) used the third climate configuration of the
Met Office Unified Model (HadCM3) and projected
that, if greenhouse gas emissions follow the A2 scenario
(Solomon et al. 2007), an additional 30% of the land
surface would be in drought by the end of the century.
They defined drought using the Palmer drought sever-
ity index (PDSI), a widely accepted meteorological
drought index.
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This work addresses the sensitivity of projections of
future drought to index definition and model uncertain-
ties. Four different drought indices were calculated at
time scales of 12 months using output from two en-
sembles of climate model simulations: a large 128-mem-
ber perturbed physics ensemble and an 11-member
multimodel ensemble. Simulations made under double
CO2 (2�CO2; 560 ppm) conditions were compared
with preindustrial CO2 (1�CO2; 280 ppm) runs. Uncer-
tainties in global changes in drought were assessed
along with the reproducibility of regional changes.

2. Model ensembles

a. Hadley Centre climate model multiparameter
ensemble

The multiparameter ensemble (MPE) is described by
Webb et al. (2006). It consists of 128 versions of version
three of the Hadley Centre Atmospheric Climate
Model (HadAM3; Pope et al. 2000) coupled to a 50-m
nondynamic mixed layer (“slab”) ocean. HadAM3 in-
corporates the Met Office Surface Exchange Scheme
(MOSES) land surface scheme, which has a four-layer
soil model (Cox et al. 1999). Multiple model parameters
were simultaneously perturbed for each ensemble
member. These parameters directly influence the fol-
lowing processes: large-scale cloud, convection, radia-
tion, boundary layer, dynamics, land surface, and sea
ice and are detailed by Collins et al. (2006). The pa-
rameter that has most relevance here is whether the
plants stomata respond to increased CO2 or not; if they
respond there is a decrease in evapotranspiration and
increase in temperature with increasing CO2 (Betts et
al. 2007). The perturbations were selected to result in a
range of climate sensitivities (the difference in global
mean temperature between 1�CO2 and 2�CO2 simu-
lations) and maximize coverage of parameter space and
model skill (Webb et al. 2006; Collins et al. 2006). Each
of the model simulations have a stable climate and are
in equilibrium with the atmospheric CO2 concentration.
The effect of increasing CO2 was studied for each en-
semble member by comparing simulations with prein-
dustrial (1�CO2) and double CO2 (2�CO2) concentra-
tions.

b. Multimodel ensemble

MPE only includes uncertainty in parameter selec-
tion for one climate model. The much smaller multi-
model ensemble (MME) includes a range of structural
perturbations that encompass a variety of physical pa-
rameterizations and spatial resolutions. It might be ex-
pected that MME will have greater variability than
MPE. However, the parameters in MPE were selected

specifically to generate a wide range of climate sensi-
tivities (2.3°–6.0°C). This range is slightly larger than
that within the multimodel ensemble (2.1°–4.3°C).

Eleven of the models participating in the Intergov-
ernmental Panel on Climate Change (IPCC) Fourth
Assessment were used here (Solomon et al. 2007): the
Canadian Centre for Climate Modelling and Analysis
(CCCma) Coupled General Circulation Model, version
3.1 (CGCM3.1; T47 and T63); Commonwealth Scien-
tific and Industrial Research Organisation Mark ver-
sion 3.0 (CSIRO Mk3.0); Goddard Institute for Space
Studies Model E-R (GISS-ER); Institute of Numerical
Mathematics Coupled Model, version 3.0 (INM-
CM3.0); Model for Interdisciplinary Research on Cli-
mate 3.2 [MIROC3.0; medium- and high-resolution
versions (medres and hires)]; ECHAM5/Max Planck
Institute Ocean Model (MPI-OM); Meteorological Re-
search Institute Coupled General Circulation Model,
version 2.3.2 (MRI CGCM2.3.2); Community Climate
System Model, version 3 (CCSM3); and Met Office
Hadley Centre Global Environmental Model, version 1
(UKMO-HadGEM1). These models were selected be-
cause of the availability of at least 20 yr of slab equi-
librium experiments at 1�CO2 and 2�CO2, which cor-
respond to MPE. It should be noted that each model in
MME has its own land surface scheme with its own
definition of total soil profile depths and layer thick-
nesses.

3. Drought indices

a. Standardized precipitation index (SPI)

The SPI is a meteorological drought index that pro-
vides a comparison of the precipitation over the pre-
ceding 12-month period with the corresponding clima-
tology. It is estimated by transforming the long-term
precipitation distribution for each location to a normal
distribution (Guttman 1999). The location-specific pa-
rameters used to transform the 1�CO2 precipitation
distribution were also used to transform the 2�CO2

precipitation distribution. Because the SPI is based
solely on precipitation it is readily available and useful
for planners and policy makers.

b. Precipitation potential evaporation anomaly
(PPEA)

The PPEA provides an alternate estimate of meteo-
rological drought at time scales of 12 months. It is
given by

PPEA � �P � Pc� � �PE � PEc�, �1�

where P and PE are the average values of the precipi-
tation and potential evaporation for the preceding 12

APRIL 2008 B U R K E A N D B R O W N 293



months, and Pc and PEc are the 20-yr precipitation and
potential evaporation climatologies, respectively. The
climatologies for 1�CO2 conditions were also used to
calculate the PPEA under 2�CO2 conditions.

c. Palmer drought severity index

The PDSI was created by Palmer (1965) to provide
the “cumulative departure of moisture supply” from
the normal. Full details of the PDSI calculation can be
found at the National Agricultural Decision Support
System Web site (http://nadss.unl.edu). As suggested by
Burke et al. (2006), the potential evaporation required
as input to the PDSI was calculated using the Penman–
Monteith equation (Shuttleworth 1993) instead of the
Thornthwaite (1948) equation. Analysis shows that the
PDSI has a memory of the order of 12 months, resulting
in the use of this time scale for the other indices. De-
spite being developed to provide an estimate of meteo-
rological drought, published comparisons between the
PDSI and soil moisture (e.g., Sheffield et al. 2004) sug-
gest that the PDSI might also give some indication of
agricultural drought. Calibration parameters deter-
mined for each location under 1�CO2 conditions were
held constant when calculating the PDSI for 2�CO2

conditions.

d. Soil moisture anomaly

The soil moisture anomaly (SMA) is a highly rel-
evant index for vegetative health and agricultural pro-
duction and is calculated within the climate models.
However, limited observations of soil moisture mean
that operationally this is not often a practical drought
index. The SMA, at time scales of 12 months, was cal-
culated for the whole soil moisture profile by subtract-
ing the soil moisture climatology [cf. Eq. (1)]. The same
climatology was used for 1�CO2 and 2�CO2 condi-
tions.

4. Definition of drought

Time series of the drought indices were calculated
over the majority of land grid cells for the two model

ensembles. Cold regions, defined as grid cells where the
temperature is less than 0°C for greater than six months
of the year and spends less than three months of the
year greater than 6°C (Deichmann and Eklundh 1991,
29–32) were excluded, mainly because the PDSI does
not include frozen processes so will likely have a high
error in these regions. Temperatures were based on the
mean climatology for 1�CO2 MPE.

Threshold values for drought were defined using the
distributions of the drought indices for the 1�CO2

simulations. For each grid cell and ensemble member
the values of the 1st, 5th, and 20th percentile of the
distribution were taken to be the threshold for extreme,
severe, and moderate drought, respectively. Therefore,
by definition, for 1�CO2 the average proportion of the
land surface in extreme, severe, and moderate drought
is 1%, 5%, and 20%, respectively. The fraction of the
land surface in drought for 2�CO2 is given by the pro-
portion of the grid cells where the drought index is less
than the relevant threshold. Each distribution contains
a limited set of data: only 240 months. Analysis of the
same indices using a larger sample size (3600 months)
shows a small low bias of 0.02 in the change in the
proportion of the land surface in drought. This is con-
sistent across ensemble members and indices and there-
fore does not contribute to uncertainties.

5. Results

a. Uncertainty in global drought projections

The ensemble mean of global land surface change in
extreme (1st percentile), severe (5th percentile), and
moderate (20th percentile) drought (�D1, �D5, and
�D20, respectively) as a result of doubling atmospheric
CO2, together with their uncertainties are presented
in Table 1 for SPI, PPEA, PDSI, and SMA (�DSPI,
�DPPEA, �DPDSI, and �DSMA, respectively). For all but
MME �D20

SPI the ensemble mean change shows an in-
crease drought, which is generally significantly different
from zero at the 5%–95% level. MME mean values are
often slightly lower than those for MPE but agree
within the 5%–95% range. MPE has larger uncertainty
ranges than MME for all indices except SMA; this

TABLE 1. The mean change in the percentage of the global land surface in drought with the 5th–95th percentile range shown in
brackets. Figure 1 shows the distribution of the change in �D20 for the different indices.

MPE: mean (5th–95th percentile) MME: mean (5th–95th percentile)

�D1 �D5 �D20 �D1 �D5 �D20

�DSPI 5 (3, 9) 5 (2, 10) 2 (�1, 9) 3 (2, 5) 3 (0, 5) 0 (�3, 3)
�DPPEA 24 (15, 35) 30 (21, 41) 33 (25, 43) 21 (17, 31) 26 (22, 36) 27 (24, 37)
�DPDSI 23 (16, 33) 26 (19, 36) 26 (19, 36) 19 (12, 25) 21 (13, 27) 20 (11, 26)
�DSMA 14 (9, 18) 15 (10, 21) 12 (7, 19) 17 (7, 24) 18 (8, 26) 13 (6, 27)
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could be because the models in MME are more likely to
reflect global observations of precipitation and tem-
perature than the models in MPE. Global distributions
of soil moisture are not available for model evaluation,
and large structural differences between the land sur-
face schemes results in larger uncertainties in MME
SMA (Pitman et al. 1999) compared with the uncertain-
ties in MPE.

Both the spread and ensemble mean values of �D
are relatively independent of drought threshold. This
has serious implications for the more serious droughts.
For example, Table 1 shows an increase of approxi-
mately 20% of the global land surface in both �D20

PDSI

and �D1
PDSI. This means that the area under moderate

drought increases from 20% to 40% of the land surface,
whereas the area under extreme drought increases
much more dramatically, from 1% to 21% of the land
surface.

The change in drought is highly dependent on the
index definition, with �DSPI showing the smallest
changes and �DPPEA the largest. SPI is derived solely
from precipitation whereas PPEA also includes atmo-
spheric demand for moisture, which increases with in-
creasing temperature. The PDSI and SMA include at-
mospheric demand for moisture but this demand is
moderated by land surface processes. For PDSI this
was calculated using a simple bucket model, while the
climate models include a more complete representation
of the land surface. Overall, increases in drought are
generally smaller for �DSMA than for �DPDSI. Table 2
shows the correlations between different indices calcu-
lated using �D for each MPE ensemble member: �DSPI

is generally well correlated with all other indices, al-
though rather weakly for �DSMA; �DPPEA is well cor-
related with �DPDSI and both are poorly correlated
with �DSMA. A major contribution to this poor corre-
lation between �DPDSI and �DSMA is the relative im-
pact of the stomata response to increased CO2 on the
different drought indices. Figure 1 shows the probabil-
ity distribution of �D20 for the two ensembles. The
MPE ensemble is split into two subensembles (stomata
response to increased CO2 is either on or off). This
parameter significantly increases uncertainties in
�DPDSI, slightly increases uncertainties in �DSPI and
�DPPEA, but has little impact on uncertainties �DSMA.

Understanding the reasons for these differences is the
subject of further work.

The dominance of atmospheric demand on global
mean changes of PPEA (and similarly although to a
lesser degree for PDSI and SMA) is illustrated in Fig. 2.
Figure 2a shows �D for each MPE member calculated
using potential evaporation from 1�CO2 conditions
and precipitation representative of 2�CO2. In Fig. 2b,
�D is calculated using precipitation from 1�CO2 con-
ditions and potential evaporation from 2�CO2. Repre-
sentative 2�CO2 precipitation/potential evaporation
was obtained by adding changes from 1�CO2 to
2�CO2 to the 1�CO2 climatologies. Changes in pre-
cipitation alone have little impact on the ensemble
mean �D with a suggestion of a decrease in drought.
However, changes in potential evaporation alone pro-
duce substantial increases in drought.

b. Uncertainty in regional drought projections

Although the majority of ensemble members and in-
dices show an increase in global mean �D, regionally
this is not the case (Fig. 3). SPI, the index based solely
on precipitation (Figs. 3a,b), shows a consistent in-
crease in moderate drought for both ensembles over
the Mediterranean and southern Africa, with an indi-
cation of common drying in Amazonia, Central
America, and Australia. The occurrence of SPI-based
drought consistently decreases in North America, cen-
tral Eurasia, and parts of South America and Africa.
This pattern of change is well correlated with annual
mean precipitation changes between 1�CO2 and
2�CO2 climates and explains the small global mean
SPI changes in Table 1. The level of agreement be-
tween MPE and MME is encouraging given the diverse
nature of the two ensembles.

PPEA, the index that includes both precipitation and
unmitigated atmospheric demand for moisture, shows a
consistent increase in drought over the majority of the
land surface (Figs. 3c,d). Exceptions to this include
Indo-China and small regions in central Africa and
South America. MME has more regions with uncertain
changes such as Canada and a region of reduced
drought east of Finland, both consistent with regions of
stronger wetting seen in the MME SPI.

The simple surface representation of PDSI moder-
ates the increase in drought seen with PPEA with
smaller areas showing consistent drying (Figs. 3e,f) and
larger areas showing no change or a decrease. How-
ever, the general pattern of change remains the same.

Soil moisture reflects both changes in precipitation
and the interaction between land surface processes,
plants, and atmospheric demand. Overall the increase
in drought is slightly lower than for the PDSI. In MPE,

TABLE 2. The correlation coefficients between the different
drought indices for the two ensembles.

PPEA PDSI SMA

SPI 0.66 0.78 0.46
PPEA 0.85 0.09
PDSI 0.21
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the likely change in SMA-based drought (Fig. 3g) south
of �45°N reflects changes in precipitation (represented
by Fig. 3a). There is a consistent increase in drought at
higher latitudes because a greater proportion of the soil
water is unfrozen in 2�CO2 and available for increased
evapotranspiration. In MME, the likely change in
drought (Fig. 3h) correlates well with precipitation
changes at all latitudes. Although only moderate

drought is discussed here, these results are representa-
tive of drought of other severities.

Figure 4 summarizes the uncertainty in the change in
drought for specific regions: Australia, South America,
North America, Indo-China, South Africa, and the
Mediterranean. As for the case of global drought, the
regional average change in the proportion of land sur-
face in drought (�d) was calculated for each ensemble

FIG. 2. The frequency distribution of the change in the proportion of the land surface in moderate
drought for a modified version of the PPEA: (a) precipitation representative of 2�CO2 and potential
evaporation from 1�CO2 and (b) precipitation from 1�CO2 and potential evaporation representative of
2�CO2.

FIG. 1. Frequency distribution of the change in the percentage of the land surface in moderate drought
for the two model ensembles and four different drought indices: (a) �D20

SPI, (b) �D20
PPEA, (c) �D20

PDSI, and
(d) �D20

SMA. The dashed line represents the probability distribution of the MPE ensemble with the
stomata responding to increased CO2, the gray line represents the probability distribution of the MPE
ensemble when the stomata do not respond to increased CO2, and the black lines each represent one
member of the MME ensemble.
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FIG. 3. Spatial distribution of the likelihood of increase or decrease of moderate drought for MPE and MME.
Locations where more than 70% of the ensemble members show a decrease (increase) in moderate drought are in
blue (red). Places where less than 70% of the ensemble members agree on either an increase or a decrease are in
gray. The percentage of the total area where more than 70% of the models agree is given.
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member. Also shown is the uncertainty in changes in
potential evaporation and precipitation for each region.

For all regions there is a large uncertainty in the
change in drought, which is dependent on region, index,
and ensemble. Both ensembles have virtually all mem-
bers producing increased potential evaporation with
ensemble medians ranging from 8 to 26 mm month�1.
However, for precipitation the sign and magnitude of
changes and their uncertainty are more dependent on
region, so it appears that for regional changes in
drought precipitation is the dominant driver, both in
the sign of change and the degree of uncertainty.

The Mediterranean, Amazonia, and South Africa
predominantly have a reduction in precipitation, which
with the increase in potential evaporation results, for
the most part, in substantial increases in drought. Aus-
tralia has the largest uncertainty in changes in drought,
with the distribution of precipitation changes for Aus-
tralia centered on zero. North America shows a similar
(but moderated) response to Australia. In Indo-China,

the small increase in precipitation is comparable to the
increase in potential evaporation resulting in smaller
uncertainties.

6. Discussion and conclusions

Changes in drought between a preindustrial climate
(280 ppm atmospheric CO2) and a double CO2 climate
were calculated for four different drought indices from
two different ensembles. The first ensemble expresses
uncertainty in the parameter space of the third Hadley
Centre climate model, and the second expresses struc-
tural uncertainty in the climate modeling process using
multiple models.

Atmospheric demand for moisture increases univer-
sally, consistent with higher atmospheric temperatures
due to the CO2 increase. Therefore, atmospheric de-
mand needs to be included if realistic impacts are to be
assessed. The soil moisture from the climate models
should include the best estimate of atmospheric de-
mand. However, drought projections using model-

FIG. 4. The uncertainty in the change in the percentage of the land surface in drought for selected regions along with the uncertainty
in changes in precipitation and potential evaporation. MPE is shown in black and MME in gray. The box shows the 25th to 75th
uncertainty range and the whiskers show the 5th to 95th uncertainty range.
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calculated soil moisture should be treated with caution
because of the lack of suitable observations for verifi-
cation.

All indices that include some measure of the atmo-
spheric demand for moisture (PPEA, PDSI, and SMA)
show increases in the proportion of the global land sur-
face in drought ranging from an additional 5%–45%.
SPI, based solely on precipitation, shows much smaller
global changes ranging from 5% less to 10% more of
the land surface. In addition to the overall increase in
area affected by drought, the area in more severe
drought increases much more than the area in less se-
vere drought. This could have serious consequences as
the impact of drought on socioeconomics increases with
the severity of drought.

Regionally, there is a very large range in the sign and
magnitude of drought changes. The only regions where
there is a consistent increase in drought across all indi-
ces and ensembles are those where the annual average
precipitation decreases as found for the Mediterranean,
Amazonia, and southern Africa. In other regions the
sign and magnitude of the change in drought is depen-
dent on index definition and ensemble member.

The impact of change in drought will be felt at the
regional scale. Therefore, in order to perform optimum
impact assessments of changes in drought, regional
studies are required using locally appropriate drought
indices. For example, a soil-moisture-based drought in-
dex on a daily basis over the growing season will be
most relevant for studying the impacts in agriculture.
Furthermore, local practices not included in the climate
model will need to be taken into account, for example,
irrigation, where remote changes may be significant.
However, the fullest expression of modeling uncer-
tainty is desirable if robust adaptation plans are to be
formed.
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